New Point Addition Formulae for ECC Applications

نویسنده

  • Nicolas Meloni
چکیده

In this paper we propose a new approach to point scalar multiplication on elliptic curves defined over fields of characteristic greater than 3. It is based on new point addition formulae that suit very well to exponentiation algorithms based on Euclidean addition chains. However finding small chains remains a very difficult problem, so we also develop a specific exponentiation algorithm, based on Zeckendorf representation (i.e. representing the scalar k using Fibonacci numbers instead of powers of 2), which takes advantage of our formulae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tripling Formulae of Elliptic Curve over Binary Field in Lopez-dahab Model

In elliptic curve cryptosystem (ECC), scalar multiplication is the major and most costly operation. Scalar multiplication involves with point operations such as point addition, point doubling, and point tripling. Scalar multiplication can be improved by using efficient point operations. This research focuses on point tripling operation for elliptic curves over the binary field in Lopez-Dahab (L...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

The Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients

In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...

متن کامل

Power Analysis to ECC Using Differential Power Between Multiplication and Squaring

Power analysis is a serious attack to implementation of elliptic curve cryptosystems (ECC) on smart cards. For ECC, many power analysis attacks and countermeasures have been proposed. In this paper, we propose a novel power analysis attack using differential power between modular multiplication and modular squaring. We show how this difference occurs in CMOS circuits by counting the expectation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007